If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-4r-5=0
a = 3; b = -4; c = -5;
Δ = b2-4ac
Δ = -42-4·3·(-5)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{19}}{2*3}=\frac{4-2\sqrt{19}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{19}}{2*3}=\frac{4+2\sqrt{19}}{6} $
| 30x+87=37+78 | | 6x-23=8x-17 | | 17x+4x-20x-x+4x=20 | | 3y-20=70 | | -8=22+20p | | -0.8x^2+16x+1=69 | | 9r+-2r-9r=14 | | 20=-7x+3x | | -5(x-3)=-19 | | 30-(10x-(5x-18))=15x-359 | | c=2(3.14)(18) | | Y=6x-5.Y=-x+9 | | 18c-13c+3c-6c+3c=5 | | 14^2+8^2=x^2 | | 14^2+8^2=x | | 8x-24-3x=11 | | 3j-2j-j+2j=14 | | 2x-(x)/(2)+(x+1)/(4)=6x | | v-4/5=-1/6 | | -2=17-4x | | 7s+-4s=-12 | | 107-w=199 | | 7(y-9)=-8y+27 | | 7s+-4=-12 | | 5x+x=80 | | m^2=-15 | | 9x2+20=5x2-4 | | 8v+4v-4v=16 | | 6.7+7.3x=-3.8x+8.8 | | -6t-7t-16=12 | | 5p+6=3p-4 | | 15j+5j-20=20 |